

Thiolatokomplexe des einwertigen Golds. Synthese und Struktur von [(2,4,6-*i*Pr₃C₆H₂S)Au]₆ und (NH₄)[(2,4,6-*i*Pr₃C₆H₂S)₂Au]¹⁾

Ingrid Schröter und Joachim Strähle*

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, W-7400 Tübingen 1

Eingegangen am 27. Februar 1991

Key Words: Gold(I) 2,4,6-tri(isopropyl)thiophenolate, hexamer / Aurate(I), bis[2,4,6-tri(isopropyl)thiophenolato] ammonium

Thiolato Complexes of Monovalent Gold. Synthesis and Structure of [(2,4,6-iPr₃C₆H₂S)Au]₆ and (NH₄)[(2,4,6-iPr₃C₆H₂S)₂Au]

Reaction of Au(CO)Cl with 2,4,6-tri(isopropyl)thiophenol affords hexameric gold(I) thiolate $[(2,4,6-iPr_3C_6H_2S)Au]_6$ (1). According to an X-ray analysis 1 forms a centrosymmetrical twelve-membered Au – S ring in the chair conformation with the linearly coordinated Au atoms at the mid-edges and the S atoms at the corners of the heterocycle. When the reaction of

Thiolatokomplexe des einwertigen Golds sind seit langer Zeit bekannt. Sie finden Anwendung als sogenanntes flüssiges Gold zur Erzeugung von Goldüberzügen auf Glas, Keramik, Kunststoff oder Metall²⁾ sowie als Antirheumatika³⁾. Dennoch hat man bisher nur ungenaue Kenntnisse über ihre Kristallstrukturen. Versuche, die Goldthiolate zu kristallisieren, waren bisher offenbar erfolglos.

Uns gelang es nun im Rahmen der Untersuchungen über Thiolatokomplexe der einwertigen Münzmetalle⁵⁾, ein hexameres Gold(I)-thiophenolat in kristalliner Form zu gewinnen. Es zeigt die von Elder et al.⁴⁾ für Gold(I)-thiomalat (Myochrisin) diskutierte Struktur eines cyclischen Hexamers.

Ergebnisse und Diskussion

Synthese von $[(2,4,6-iPr_3C_6H_2S)Au]_6$ (1) und $(NH_4)[(2,4,6-iPr_3C_6H_2S)_2Au]$ (2)

Das Gold(I)-thiolat $[(2,4,6-iPr_3C_6H_2S)Au]_6$ (1) bildet sich bei der Reaktion von 2,4,6-Tri(isopropyl)thiophenol mit Au(CO)Cl in Diethylether bei -78 °C [Gl. (1)].

$$6 2,4,6-i\Pr_{3}C_{6}H_{2}SH + 6 Au(CO)Cl \xrightarrow{\text{Ether}} [(2,4,6-i\Pr_{3}C_{6}H_{2}S)Au]_{6} + 6 HCl + 6 CO$$
(1)

Nach Zugabe von THF zu einer Etherlösung erhält man innerhalb einiger Tage farblose, trikline Einkristalle von $1 \cdot 4$ THF (Tab. 1). Sie verwittern jedoch bei Raumtemperatur. Solvatfreies 1 ist an Luft stabil, gut löslich in organischen Solventien wie Chloroform, Diethylether und Toluol, jedoch schlecht löslich in *n*-Hexan, THF und Ethanol.

Führt man die Reaktion des Thiophenols in flüssigem Ammoniak mit AuI aus, so entsteht überwiegend der Einkernkomplex $[(2,4,6-iPr_3C_6H_2S)_2Au]^-$ [Gl. (2)].

$$2 2,4,6-i\Pr_{3}C_{6}H_{2}SH + AuI + 2 NH_{3} \xrightarrow{NH_{3}} (NH_{4})[(2,4,6-i\Pr_{3}C_{6}H_{2}S)_{2}Au] + NH_{4}I$$

$$(2)$$

2,4,6-tri(isopropyl)thiophenol is carried out with AuI in liquid ammonia the thiolato complex $[(2,4,6-iPr_3C_6H_2S)_2Au]^-$ NH₄⁺ (2) is obtained. It crystallizes as NH₄ · 2 · 3 NH₃. The gold atom in 2 is linearly coordinated by two thiolato S atoms. The ammonium cation forms hydrogen bonds with three NH₃ solvate molecules.

Beim langsamen Abdampfen des Ammoniaks kristallisiert 2 als Ammoniaksolvat mit drei NH_3 -Molekülen aus. Die farblosen, monoklinen Kristalle (Tab. 1) sind bei Raumtemperatur instabil und zersetzen sich unter Abgabe der Solvatmoleküle zu amorphem 2.

Die bevorzugte Bildung des Komplexes $2 \cdot 3 \text{ NH}_3$ in flüssigem Ammoniak hängt vermutlich mit der höheren Polarität des Lösungsmittels und mit der Tatsache zusammen, daß die vom Thiophenol abgespaltenen Protonen NH₄⁺-

Abb. 1. Struktur von 1¹⁸). Ausgewählte Abstände [pm] und Winkel [°], Standardabweichungen in Klammern: Au1 – Au2 344.69(7), Au1 – Au3 360.77(7), Au2 – Au3 363.79(7), Au1 – S1 228.5(3), Au1 – S3 227.8(3), Au2 – S1 229.5(3), Au2 – S2 228.5(3), Au3 – S2 229.1(3), Au3 – S3 228.6(3), S1 – C11 182(1), S2 – C21 183(1), S3 – C31 183(1); Au2 – Au1 – Au3 – 118 (2) – Au1 – Au2 – Au3 – 116 (2)

Chem. Ber. 124 (1991) 2161-2164 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/1010-2161 \$ 3.50+.25/0

Kationen erzeugen, während bei der Synthese in Ether HCl entweicht.

Kristallstrukturen von 1 · 4 THF und 2 · 3 NH₃

Die Kristallstrukturanalyse von 1 · 4 THF ergibt für das Gold(I)-thiophenolat eine zentrosymmetrische Au-S-Zwölfringstruktur (Abb. 1). Die einwertigen Au-Atome sind von den verbrückenden Thiolatliganden linear koordiniert. Der Au-S-Heterocyclus hat die Konformation eines Sessels, bei dem die Thiolato-S-Atome die Ecken und die Au-Atome die Kantenmitten besetzen. Die sechs Au-Atome liegen dabei nahezu in einer Ebene. Die 2,4,6-Triisopropylphenyl-Substituenten an den Atomen S3 und S3' nehmen eine axiale Position ein, während alle anderen Reste äquatorial angeordnet sind. 1 hat somit eine hexamere Struktur wie sie von Elder et al.⁴⁾ für das als Antirheumatikum angewandte Gold(I)-thiomalat (Myochrisin) aufgrund von EXAFS- und Röntgenweitwinkelbeugungs-Untersuchungen diskutiert wurde.

Nach unserer Kenntnis sind darüber hinaus bei neutralen Thiolaten der einwertigen Münzmetalle cyclische Hexamere bisher nicht beobachtet worden. Im Falle von Cu(I) und Ag(I) überwiegen Tetramere, bei denen der $(M - S)_4$ -Ring die Form eines Quadrats aufweist 5.6.7). Daneben kennt man auch oktameres $[(2,4,6-i\Pr_{3}C_{6}H_{2}S)Cu]_{8}^{5,8)}$.

Die Struktur von Bis(thiolato)aurat(I) 2 ist in Abb. 2 dargestellt. Auch hier zeigt das einwertige Gold die typische lineare Koordination. Die Anordnung C11-S1-Au-S2-C21 ist gewinkelt mit einem Diederwinkel von 114.7(7)°. Ein analog gebauter Thiolatokomplex ist

Abb. 2. Struktur von 2¹⁸⁾. Ausgewählte Abstände [pm] und Winkel °], Standardabweichungen in Klammern: Au – S1 228.8(4), Au – S2

 $\begin{array}{c} \text{228.8(4), S1-C11 178(1), S2-C21 180(1), N1-N2 288(1), N1-N3 \\ 296(2), N1-N4 288(1); \\ \text{S1-Au-S2 175.6(1), Au-S1-C11 102.8(5), Au-S2-C21 \\ 107.1(5), N2-N1-N3 115.9(4), N2-N1-N4 108.5(4), \\ N3-N1-N4 116.0(6) \end{array}$

Tab. 1. Kristalldater	n und Parameter	r der Strukturbes	timmung von 1	\cdot 4 THF und 2	• 3 NH ₃
-----------------------	-----------------	-------------------	---------------	---------------------	---------------------

	1-4THF	2·3NH₃
Summenformel	Au ₆ S ₆ C ₉₀ H ₁₃₈ ·(C ₄ H ₈ O) ₄	AuS ₂ C ₃₀ N ₄ H ₅₉
Molmasse	2882,72	736,93
Kristalldimensionen [mm]	$0,45 \times 0,40 \times 0,15$	$0,25\times0,20\times0,15$
Messtemperatur [°C]	-80	-90
Kristallsystem	triklin	monoklin
Raumgruppe	PI	P21/c
a [pm]	1423,7(4)	2290,5(5)
b [pm]	1374,5(4)	866,7(4)
<i>c</i> [pm]	1709,8(4)	1980,7(5)
α [°]	89,15(3)	90
β [°]	100,68(3)	115,43(2)
γ [°]	93,38(3)	90
V [pm ³]	3282,2·10 ⁶	3551,1·10 ⁶
Z	1	4
$\rho_x [g \cdot cm^{-3}]$	1,458	1,378
μ (MoK _{α}) [cm ⁻¹]	67,983	42,697
F(000) [Elektronen]	1408	1512
Strahlung ($\lambda = 71,073$ pm,		
Graphit-Monochromator)	MoKα	MoKα
Diffraktometer	CAD4, Enraf-Nonius	CAD4, Enraf-Nonius
Meßmethode	ω -Scans	ω -Scans
Meßbereich (O) [°]	3-25	3-25
Bereich (h, k, l)	0 bis 16, -16 bis 16, -20 bis 20	0 bis 20, 0 bis 3, -23 bis 23
Zeitintervall der Intensitätskontrolle	2h, 15% Abnahme in 120 h	2h, 4,6% Abnahme in 21h
Gemessene Reflexe	8686	1984
Unabhängige Reflexe (I>3 $\sigma(I)$)	5968	1376
Verfeinerte Parameter	495	165
Gewichtsschema	$1/\sigma^2$	$1/\sigma^2$
Absorptionskorrektur	Psi-Scan-Methode	DIFABS
minimale/maximale Korrektur	0,752/0,998	0,859/1,122
Atomformfaktoren	International Tables ¹⁷⁾	International Tables 17)
R/R_{ω}	0,054/0,079	0,030/0,040

Bis(thiophenolato)aurat(I), $[(PhS)_2Au]^{-9}$, das als Tetraphenylphosphoniumsalz erhalten wurde.

Interessant ist, daß in $2 \cdot 3$ NH₃ jedes Ammoniumkation über Wasserstoffbrückenbindungen mit drei NH₃-Molekülen zu einem Aggregat HN(HNH₃)₃⁺ verknüpft ist. Die vier N-Atome bilden dabei eine pyramidale Anordnung mit Winkeln N-N-N von 108.5 bis 116.0°. Die N-N-Abstände der H-Brücken betragen 288 bis 296 pm (Abb. 2).

Die Au-S-Abstände sind in 1 (Abb. 1) und 2 (Abb. 2) innerhalb der Fehlergrenzen gleich groß und betragen im Mittel etwa 228.7 pm. Sie entsprechen damit weitgehend dem Wert von 230 pm, der von Elder et al.⁴⁾ für das hexamere Goldthiomalat abgeleitet wurde. Vergleichbare Werte werden auch in $[(PhS)_2Au]^{-9}$ mit 227 pm und in 2-Thiouracilato(triphenylphosphan)gold(I)¹⁰ mit 229.8 pm gefunden. Die Winkel S-Au-S liegen mit 175.4 bis 177.5° bei 1 und 175.6° bei 2 nahe beim Erwartungswert.

Die für Goldthiomalat aus Röntgenweitwinkelbeugungs-Untersuchungen⁴⁾ abgeleiteten Au-Au-Abstände und Au-S-Au-Winkel stimmen weniger gut mit unseren Ergebnissen überein. Sie betragen im Fall von 1 344.7-363.8 pm bzw. 97.6-105.4° gegenüber 335 pm und 94° im Thiomalat. Dies könnte ein Hinweis darauf sein, daß für Myochrisin die diskutierte⁴⁾ offenkettige Struktur zutrifft.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung und der Firma Degussa, Wolfgang, für die Überlassung von Gold(III)-chlorid.

Experimenteller Teil

Gold(I)-2,4,6-tri(isopropyl)thiophenolat (1): Eine Suspension von 0.29 g (1.12 mmol) Au(CO)Cl in 50 ml Diethylether wird auf - 78 °C gekühlt. Unter Rühren gibt man 2.4 ml (9.36 mmol) 2,4,6-Tri(isopropyl)thiophenol¹¹¹ zu, wobei sich Au(CO)Cl unter Gasentwicklung auflöst. Nach ca. 15 min ist die Gasentwicklung abgeschlossen, und es liegt eine rote Lösung vor. Man läßt auf Raumtemp. erwärmen und gibt THF im Verhältnis 1:1 zu. Nach mehreren Tagen entstehen farblose Kristalle von $1 \cdot 4$ THF. Beim Trocknen im Hochvak. werden die Solvatmoleküle unter Zerstörung der Kristalle und Bildung von reinem 1 abgegeben. Weitere Substanz kann durch Einengen der Mutterlauge gewonnen werden. – FIR (THF): 340 cm⁻¹ m, 354 m, 374 schw, 440 m, 524 m, 636 (Schulter), 650 st.

C ₉₀ H ₁₃₈ Au ₆ S ₆	(2594.2)	Ber.	C 41.67	Н	5.36	S	7.41
		Gef.	C 41.66	Н	5.42	S	7.52

Ammonium-bis[2,4,6-tri(isopropyl)thiophenolato]aurat(1) (2): 1.0 g (3.09 mmol) AuI werden bei -78 °C in 30-40 ml flüssigem NH₃ gelöst und mit 1.58 ml (6.13 mmol) $iPr_3C_6H_2SH^{11}$ vereinigt. Dabei bildet sich ein weißer Niederschlag, der sich jedoch innerhalb von 24 h wieder auflöst. Man läßt nun das Ammoniak innerhalb von ca. 3 d abdampfen. Es verbleiben farblose, säulenförmige Kristalle von $2 \cdot 3$ NH₃, die bei Raumtemp. innerhalb eines Tages unter Abgabe der Solvatmoleküle zerfallen.

Kristallstrukturanalysen: Wegen der Instabilität der Einkristalle wurden alle Röntgenbeugungsuntersuchungen von $1 \cdot 4$ THF bei -80° C und von $2 \cdot 3$ NH₃ bei -90° C mit einem Vierkreisdiffraktometer CAD4 der Firma Enraf-Nonius¹²⁾ durchgeführt. Die Kristalldaten und Parameter der Intensitätsmessung sind in Tab. 1 aufgeführt. Die Gitterkonstanten wurden bei der angegebenen Meßtemperatur mit Mo- K_{α} -Strahlung aus der genauen Lage von 25 Reflexen (10 < θ < 15° bei 1 · 4 THF und 9 < θ < 15° bei 2 · 3 NH₃) mit Hilfe einer Ausgleichsrechnung verfeinert. Die Lage der Au-Atome wurde mit Direkten Methoden¹²) bestimmt. An-

Tab. 2. Ortsparameter und äquivalente Temperaturparameter U_{eq} der Atome in 1 · 4 THF. $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$. Standardabweichungen in Klammern. Mit * gekennzeichnete Atome wurden isotrop verfeinert. Mit ** gekennzeichnete

Temperaturparameter wurden nicht verfeinert

Atom	x	у	Z	Ueq
Au1	0,19370(5)	-0,07145(6)	0,15402(5)	0,0347(5
Au2	0,20795(5)	0,16336(6)	0,08178(5)	0,0366(5
Au3	0,00716(5)	0,23273(6)	-0,06889(5)	0,0359(5
S1	0,3063(3)	0,0380(4)	0,1195(3)	0,040(3)
S2	0,1021(4)	0,2825(4)	0,0484(3)	0,041(3)
S3	-0,0893(4)	0,1902(4)	-0,1871(3)	0,040(3)
C11	0,386(1)	0,075(1)	0,212(1)	0,04(1)
C12	0,487(1)	0,067(2)	0,206(1)	0,05(1)
C13	0,553(2)	0,097(2)	0,278(1)	0,06(2)
C14	0,524(2)	0,132(2)	0,345(1)	0,07(2)
·C15	0,424(2)	0,136(2)	0,344(1)	0,06(2)
C16	0,354(1)	0,110(2)	0,279(1)	0,04(1)
C21	0,166(1)	0,397(1)	0,031(1)	0,04(1)
C22	0,217(1)	0,408(1)	-0,031(1)	0,03(1)
C23	0,258(1)	0,498(1)	-0,043(1)	0,04(1)
C24	0,251(1)	0,574(1)	0,003(1)	0,04(1)
C25	0,204(1)	0,562(1)	0,066(1)	0,04(1)
C26	0,161(1)	0,473(1)	0,081(1)	0,03(1)
C31	-0,012(1)	0,141(1)	-0,249(1)	0,04(1)
C32	0,042(1)	0,062(2)	-0,226(1)	0,05(1)
C33	0,104(2)	0,037(2)	-0,275(1)	0,06(2)
C34	0,111(2)	0,082(2)	-0,342(1)	0,07(2)
C35	0,056(2)	0,163(2)	-0,364(1)	0,06(2)
C36	-0,006(2)	0,193(2)	-0,316(1)	0,05(1)
C121	0,520(1)	0,030(2)	0,133(1)	0,05(1)
C122	0,615(2)	-0,017(2)	0,154(2)	0,11(3)
C123	0,528(2)	0,110(2)	0,076(2)	0,09(2)
C141	0,599(2)	0,164(2)	0,414(2)	0,09(2)
C142	0,592(3)	0,097(3)	0,484(2)	0,14(3)
C143	0,597(2)	0,267(2)	0,431(2)	0,12(3)
C161	0,254(1)	0,118(2)	0,284(1)	0,04(1)
C162	0,222(2)	0,050(2)	0,346(1)	0,07(2)
C163	0,235(2)	0,225(2)	0,298(2)	0,09(2)
C221	0,234(1)	0,322(2)	-0,087(1)	0,04(1)
C222	0,340(2)	0,297(2)	-0,072(2)	0,07(2)
C223	0,195(2)	0,342(2)	-0,177(1)	0,07(2)
C241	0,294(2)	0,676(2)	-0,012(1)	0,06(2)
C242	0,224(2)	0,751(2)	-0,029(2)	0,12(3)
C243	0,374(3)	0,707(2)	0,052(2)	0,15(3)
C261	0,110(1)	0,460(1)	0,149(1)	0,04(1)
C262	0,158(2)	0,515(2)	0,223(1)	0,07(2)
C263	0,005(2)	0,485(2)	0,123(1)	0,07(2)
C321	0,042(1)	0,007(2)	-0,140(1)	0,00(2)
C322	0,139(2)	0,016(2)	-0,091(1)	0,07(2)
C323	0,014(2)	-0,105(2)	-0,172(2)	0,09(2)
C341	0,187(2)	0,052(2)	-0,391(2)	0,11(3) 0,15(2)
C342	0,141(2)	-0,008(3)	-0,400(2)	0,15(3)
C361	0,200(2)	0,122(3) 0.281(2)	-0.344(1)	0,10(0)
C362	-0,003(2)	0.363(2)	-0.379(2)	0,00(2) 0.08(2)
C363	-0.149(2)	0.253(2)	-0.396(2)	0.10(3)
C401*	0.562(2)	0.445(2)	0.165(2)	0.09(2)
C402*	0.556(3)	0.446(3)	0,245(3)	0.15(3)
C403*	0.455(3)	0,398(3)	0,242(3)	0.15(3)
C404*	0.413(3)	0.383(3)	0,158(2)	0,12(3)
C405*	0,483(3)	0,418(3)	0,105(3)	0,16(3)
C411*	0,357(5)	0,451(5)	0,523(4)	0,25**
C412*	0,261(5)	0,443(5)	0,573(4)	0,25**
C413*	0,201(5)	0,404(5)	0,482(4)	0,25**
C414*	0,247(5)	0,465(5)	0,434(4)	0,25**
C415*	0.343(5)	0,413(5)	0,453(4)	0,25**

Tab. 3. Ortsparameter und äquivalente isotrope Temperaturparameter U_{eq} der Atome in 2 · 3 NH₃. $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$. Standardabweichungen in Klammern. Mit * gekennzeichnete Atome wurden isotrop verfeinert

Atom	x	у	Z	Ueq
Au	0,78770(2)	0,1937(1)	0,27890(2)	0,031(2)
S1	0,7194(1)	0,3425(8)	0,3084(1)	0,04(1)
S2	0,8545(1)	0,0297(8)	0,2545(1)	0,05(1)
N1*	0,7574(4)	0,644(2)	0,2262(5)	0,06(2)
N2*	0,8056(4)	0,504(2)	0,1281(5)	0,06(2)
N3*	0,6644(4)	0,900(2)	0,1615(5)	0,06(2)
N4*	0,8654(5)	0,706(3)	0,3679(6)	0,09(2)
C11*	0,6447(4)	0,240(2)	0,2659(5)	0,03(1)
C12*	0,5936(4)	0,299(2)	0,1977(5)	0,03(1)
C13*	0,5373(4)	0,213(2)	0,1634(5)	0,03(1)
C14*	0,5282(4)	0,076(3)	0,1947(5)	0,04(1)
C15*	0,5766(4)	0,023(2)	0,2646(5)	0,03(1)
C16*	0,6344(4)	0,115(3)	0,3000(5)	0,03(1)
C21*	0,8810(4)	0,130(2)	0,1928(5)	0,03(1)
C22*	0,9342(4)	0,223(2)	0,2199(5)	0,03(1)
C23*	0,9547(4)	0,299(2)	0,1697(5)	0,03(1)
C24*	0,9234(4)	0,269(2)	0,0934(5)	0,03(1)
$C25^*$	0,8700(5)	0,178(3)	0,0668(5)	0,04(1)
C26*	0,8469(4)	0,101(3)	0,1132(5)	0,03(1)
C120*	0,6014(4)	0,437(3)	0,1608(5)	0,04(1)
C121*	0,6309(5)	0,409(3)	0,1061(6)	0,05(1)
C122*	0,5379(5)	0,532(3)	0,1191(6)	0,06(2)
C140*	0,4670(5)	-0,024(3)	0,1548(6)	0,05(1)
C141*	0,4578(6)	-0,077(3)	0,0786(6)	0,07(2)
C142*	0,4078(5)	0,063(3)	0,1516(6)	0,06(2)
C160*	0,6853(4)	0,050(3)	0,3750(5)	0,04(1)
C161*	0,7179(5)	-0,095(3)	0,3638(6)	0,05(1)
$C162^{\star}$	0,6547(5)	0,011(3)	0,4300(5)	0,05(1)
C220*	0,9708(4)	0,261(2)	0,3030(5)	0,03(1)
C221*	1,0432(5)	0,252(3)	0,3315(6)	0,04(1)
C222*	0,9490(5)	0,414(3)	0,3162(6)	0,05(1)
C240*	0,9457(4)	0,347(3)	0,0407(5)	0,03(1)
C241*	0,9627(5)	0,232(3)	-0,0053(6)	0,05(2)
C242*	0,8975(5)	0,462(3)	-0,0087(6)	0,06(2)
C260*	0,7881(4)	-0,006(3)	0,0810(5)	0,04(1)
$C261^{\bullet}$	0,7845(6)	-0,107(4)	0,0168(7)	0,08(2)
$C262^*$	0,7276(5)	0,104(3)	0,0506(6)	0,07(2)

schließende Differenz-Fourier-Synthesen ergaben dann jeweils das Strukturmodell ohne die Lagen der H-Atome. Letztere wurden am Ende der Verfeinerung nach der Methode der kleinsten Fehlerquadrate für 1 und 2 berechnet und mit in die Strukturfaktorrechnung einbezogen. Die Bestimmung der Lage der Solvatmoleküle wurde bei 1 · 4 THF durch eine Fehlordnung crschwert. Bei einem der THF-Moleküle mußten die Temperaturfaktoren mit Werten von

 $20 \cdot 10^4$ pm² festgehalten werden. Die Absorptionskorrektur wurde empirisch nach der Psi-Scan-Methode¹³⁾ bzw. mit dem Programm DIFABS¹⁴⁾ durchgeführt. Bei der letzten Verseincrungsrechnung nach der Methode der kleinsten Fehlerquadrate wurde jeweils auch eine Extinktionskorrektur¹⁵⁾ berücksichtigt. In Tab. 2 und 3 sind die Orts- und äquivalenten isotropen Temperaturparameter der Atome in $1 \cdot 4$ THF und $2 \cdot 3$ NH₃ angegeben¹⁶⁾.

CAS-Registry-Nummern

1: 134029-37-1 / 1 (als Salz): 134029-40-6 / 1 \cdot 4 THF: 134029-39-3 / 1 \cdot 4 THF (als Salz): 134152-22-0 / 2 \cdot 3 NH3: 134029-38-2 / Au(CO)Cl: 50960-82-2

- ¹⁾ Herrn Professor Michael Hanack zum 60. Geburtstag gewidmet.

- A. N. Papazian, Gold Bull. 15 (1982) 81.
 R. V. Parish, S. M. Cottrill, Gold Bull. 20 (1987) 3.
 R. C. Elder, K. Ludwig, J. N. Cooper, M. K. Eidsness, J. Am. Chem. Soc. 107 (1985) 5024.
 G. Elder, K. Ludwig, Strable Z. NaturGraph. Toil B 45 (1000)
- ⁵⁾ I. Schröter-Schmid, J. Strähle, Z. Naturforsch., Teil B, 45 (1990) 1537.
- ⁶ B. Becker, W. Wojnowski, K. Peters, E.-M. Peters, H. G. von Schnering, Polyhedron 9 (1990) 1659
- ⁷⁾ W. Wojnowski, M. Wojnowski, K. Peters, E.-M. Peters, H. G.
- von Schnering, Z. Anorg. Allg. Chem. 530 (1985) 79. ⁸ Q. Yang, K. Tang, H. Liao, Y. Han, Z. Chen, Y. Tang, J. Chem. Soc., Chem. Commun. 1987, 1976.
- ⁹⁾ P. A. Bates, J. M. Waters, Acta Crystallogr., Sect. C, 41 (1985) 862.
- ¹⁰ B. F Hoskins, Z. Lu, E. R. T. Tiekink, Inorg. Chim. Acta 158 (1989) 7.
- ¹¹⁾ P. J. Blower, J. R. Dilworth, J. Hutchinson, T. Nicholson, J. A. Zubieta, J. Chem. Soc., Dalton Trans. 1985, 2639.
- ¹²⁾ Automatisiertes Vierkreisdiffraktometer CAD4, Fa. Enraf-Nonius, Delft, mit Structure Determination Package VAXSDP, Version 3.0 (1986) von B. A. Frenz & Associates Inc., College Station, Texas 77840, USA und Fa. Enraf-Nonius, Delft, Hol-
- land. ¹³⁾ A. C. T. North, D. Phillips, F. S. Mathews, Acta Crystallogr., Sect. A, 24 (1968) 351.
- ¹⁴⁾ N. Walker, D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.
- ¹⁵⁾ W. H. Zachariasen, Acta Crystallogr. 16 (1963) 1139.
- ¹⁶⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55220, der Autoren und des Zeitschriftenzitats angefordert werden.
- ¹⁷⁾ International Tables for X-ray Crystallography, Bd. IV, Kynoch Press, Birmingham 1974.
- ¹⁸⁾ E. Keller, SCHAKAL, Programm zur graphischen Darstellung von Kristallstrukturen, Freiburg 1990.

[97/91]